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In routine bridge designs, the dynamic e!ects of the moving vehicles on bridges are taken
into account by increasing the static loads by an impact factor. This impact factor depends
on many things, and various design codes indeed give di!erent guidance on the impact
factor. This paper describes a study on the impact e!ects on a cable-stayed bridge under
railway train loading. The cable-stayed bridge is modelled as a planar system. The rail
irregularities and the geometric non-linear behaviour of the cable-stayed bridge are taken
into account. The train comprises a number of cars, and numerical models of various degrees
of sophistication are investigated. They include the sophisticated model comprising a 4-axle
system possessing 10 degrees of freedom (d.o.f.), and the simpli"ed models comprising
a series of 2-d.o.f. mass}spring}damper systems, moving masses or moving forces. The
impact factors for various speeds are evaluated using a typical cable-stayed bridge with
various models for the train. The models are then reviewed in the light of such results.

( 2001 Academic Press
1. INTRODUCTION

Cable-stayed bridges have been extensively employed in the construction of major crossings
over the last three decades because of their aesthetic appeal, structural e$ciency, ease of
construction, small size of substructures and enhanced sti!ness compared with suspension
bridges. With the rapid increase in span length, combined with the trend to use lighter and
high-strength materials and therefore more slender sections for the bridge deck, concern has
been raised on the dynamic behaviour of cable-stayed bridges, especially under increasingly
heavy and fast moving loads.

In the dynamic analysis of such combined systems, the engineer has to decide a suitable
model for the moving vehicles as well as how the fast moving heavy vehicles interact with
the bridge structure. Theoretically, a moving load model may be used where the inertia of
the vehicle is small compared to that of the bridge and the method has been adopted by
0022-460X/01/080447#19 $35.00/0 ( 2001 Academic Press



448 F. T. K. AU E¹ A¸.
various researchers [1}6]. Where the inertia of the vehicle cannot be taken as small, the
mass has to be somehow accounted for. A moving vehicle can be modelled as a one-foot
dynamic system having two degrees of freedom (d.o.f.) [7}9]. More realistic multi-axle
vehicles have also been employed in the dynamic analysis of various types of highway
bridge [10}13]. Similarly, in the dynamic analysis of railway bridges, the train has been
modelled as a series of moving loads or axles [9, 14]. Some other researchers have adopted
more sophisticated multi-axle models for the train cars [15}17].

There are two methods to account for the interaction between the moving vehicles and
the bridge structures. In the "rst approach, coupled equations of motion are formulated for
the entire bridge}vehicle system and these equations are subsequently solved by direct time
integration such as the Newmark or Wilson-h method. This method was used by most
researchers [9, 15, 17]. In the other approach, two uncoupled sets of equations are set up for
the bridge and the vehicles respectively. The two sets of equations are then solved in an
iterative manner to ensure the geometrical compatibility and force equilibrium conditions
at the vehicle}bridge interface [10}12].

The use of sophisticated train models to study the dynamic response of cable-stayed
bridges appears rare. The investigation by Huang and Wang [18] of dynamic response of
cable-stayed bridges was to certain extent similar but the load was a single 3-axle 7-d.o.f.
moving truck instead of a train. Wiriyachai et al. [15] used a 4-axle train model to study the
impact e!ects on simply supported truss bridges. Yang and Fonder [5] employed a moving
load model to investigate the dynamic response of a cable-stayed bridge having a main span
of 150 m. Yang et al. [17] adopted a 6-axle vehicle model in the dynamic analysis of
a cable-stayed bridge with a 60 m main span.

This paper describes a study on the impact e!ects on a cable-stayed bridge under railway
train loading. The cable-stayed bridge is modelled as a planar system, which is good enough
for the study of impact e!ects under the railway tra$c although it is unable to predict the
behaviour associated with the torsional modes. Non-linear static analysis of the bridge is
"rst performed to get the internal forces in the bridge deck, towers and stay cables under the
permanent loading. Non-linearities such as those arising from the sag of stay cables,
beam}column behaviour of the bridge deck and towers, and geometrical large displacements
are taken into account in the static analysis.

The internal forces obtained from the static analysis are then utilized to build up the
model which is necessary for the dynamic analysis. The rail irregularities and the
geometric non-linear behaviour of the cable-stayed bridge are taken into account. The train
comprises a number of cars, which are modelled using various methods. They include the
sophisticated model comprising a 4-axle system possessing 10 d.o.f., and the simpli"ed
models comprising a series of 2-d.o.f. mass}spring}damper systems, moving masses or
moving forces. The impact e!ects for various speeds are then evaluated using a typical
cable-stayed bridge. The various models employed are then reviewed in the light of such
results.

2. THE TRAIN MODEL

A typical railway vehicle consists of the vehicle body carrying passengers or freight and
the wheels. The body is supported either directly on their axles or on bogies. The
increasingly heavy loading has called for more axles grouped into bogies, where two or
more axles are mounted on the same frame. The bogie frames are connected to the axles and
to the railway vehicle body, respectively, through the primary and secondary suspension
systems, which comprise springs and shock absorbers.



Figure 1. Model of a typical train vehicle for the analysis of vehicle}bridge interaction.
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Figure 1 shows the train vehicle model adopted in the present study. The vehicle body is
modelled as a rigid body having a mass m

v
and a moment of inertia I

v
about the transverse

horizontal axis through its centroid. Similarly, each bogie frame is considered as a rigid
body with a mass m

f
and a moment of inertia I

f
about the transverse horizontal axis

through its centroid. Each axle along with the wheels has a mass m
w
. The spring and shock

absorber in the primary suspension for each axle are characterized by spring sti!ness k
2
and

damping coe$cient c
2

respectively. Likewise the secondary suspension is characterized by
spring sti!ness k

1
and damping coe$cient c

1
. The vertical displacements of the train vehicle

model are described by y
1

to y
10

at locations marked by crosses in Figure 1 with respect to
their equilibrium positions before coming to the bridge. As the vehicle body is assumed to
be rigid, its motion may be described by the vertical displacement y

v
and rotation h

v
at its

centroid instead of y
9

and y
10

. Similarly, the vertical motions of the bogie frames may also
be described by y

f1
, h

f1
, y

f2
and h

f2
at their centroids instead of y

5
to y

8
. The displacement

vector d
t
for the train vehicle can therefore be written in terms of displacements at the

centroid of the vehicle body y
v
and h

v
, the displacements at the centroids of the bogie frames

y
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, h
f1

y
f2

and h
f2

, and the displacements of the four axles y
1

to y
4

as
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Figure 2 shows the same train vehicle model with the vehicle body, the bogie frames and
the axles isolated as free bodies. The internal forces and inertia forces are also shown. The
reactions at the rail, and at the primary and secondary suspension systems are expressed in
terms of the static reaction components R

w
, R

p
and R

s
, respectively, as well as the dynamic

reaction components f
c1

to f
c4

and f
1
to f

6
. The static reaction components R

w
, R

p
and R

s
are

given as

R
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v
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w
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R
p
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f
g/2, (3)

R
s
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v
g/4, (4)

where g is the acceleration due to gravity. The equations of motion of each free body can
then be formulated, and they are given in Appendix A. As the static case is one particular



Figure 2. Internal forces acting in the 4-axle model of typical train vehicle.
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case of the dynamic situation, the static reaction components cancel themselves and do not
appear in these equations. The equation of motion can be written in matrix notation in
terms of the mass matrix m

t
, the damping matrix c

t
, the sti!ness matrix k

t
and the load

vector f
t
for the train vehicle as

m
t
dG
t
#c

t
dQ
t
#k

t
d
t
"f

t
, (5)

where the dot denotes di!erentiation with respect to time t. The displacement vector d
t
for

the train vehicle can be divided into the upper group dt
u
, which are unconstrained by the

bridge, and the lower group dt
I
, which are in contact with the bridge, where
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The equation of motion for the train model can be written in terms of the sub-matrices and
sub-vectors as
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where the sub-matrices and sub-vectors are given in Appendix A. Notice that the load
sub-vector f t

u
is zero. The load sub-vector f t

I
comprises the transient components only as the

displacements in the sub-vector d t
u
of the train are given with respect to their equilibrium

positions before coming to the bridge. Therefore, the total reactions f1 t
I
between the train

axles and the bridge have to include the static reactions also, i.e.,
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Figure 3. Degrees of freedom of a typical beam element.
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3. THE BRIDGE MODEL

The cable-stayed bridge is modelled as a planar system. Beam elements are used to model
the bridge deck and towers. The deformation of each beam element is de"ned by the d.o.f. at
the end nodes i and j. The displacement vector de

b
of the beam element therefore appears as

de
b
"[u

i
v
i

u
i

u
j

v
j

u
j
]T, (10)

where u and v are the translational displacements along the local x- and y-axes, respectively,
and u is the rotational displacement, as shown in Figure 3. The sti!ness matrix ke

b
of the

beam element subjected to an axial force can be written in terms of the linear sti!ness matrix
ke
bI

and the geometric sti!ness matrix ke
bg as

ke
b
"ke

bI
#ke

bg . (11)

The stay cables are modelled as single-bar elements and the non-linear catenary e!ect is
taken into account using the equivalent modulus of elasticity E

eq
given by

E
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"

E
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1#(wH)2A
c
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, (12)

where H is the horizontal projected length of the cable, A
c
is the cross-sectional area, E

c
is

the e!ective material modulus of elasticity of stay cable, w is the weight per unit length of the
cable and ¹ is the prevailing cable tension obtained for permanent loading.

After the standard procedures of formation and transformation of the element matrices
and vectors, followed by the standard assembly process, the equation of motion for the
bridge can therefore be written as
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in terms of the mass matrix m
b
, the damping matrix c

b
, the sti!ness matrix k

b
and the

displacement vector d
b
for the entire bridge, the shape function matrix N

b
containing row

vectors of shape functions evaluated at the contact points between the axles and the rail as
well as the total reaction vector f1 t

I
between the train axles and the bridge.

4. FORMULATION OF TRAIN-BRIDGE SYSTEM

The vertical displacement y (x, t) of an axle depends on the vertical displacement of the
bridge y

b
(x, t) and the rail irregularity r (x) at the same location, i.e.,

y (x, t)"y
b
(x, t)#r (x), (14)
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in which x denotes the horizontal position of the axles. The vertical displacement of the
bridge y

b
(x, t) at the contact point can be expressed in terms of the nodal displacement

vector de
b
(t) of the beam element carrying the axle as

y
b
(x, t)"Ne

b
(x)de

b
(t), (15)

where Ne
b
(x) is the matrix containing the shape functions of the beam element. Combining

equations (14) and (15) gives

y(x, t)"Ne
b
(x)de

b
(t)#r(x). (16)

The axles of the train may be straddling many elements at a time. Equation (16) can
therefore be expanded to cover all axles, i.e.,

dt
I
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b
(x)d

b
(t)#r (x), (17)

where N
b
(x) is the shape function matrix evaluated at the contact points between the axles

and the rail, d
b
(t) is the displacement vector of the bridge and r (x) is a vector containing the

rail irregularities at the contact points. The vertical velocity vectors dQ t
I
and the vertical

acceleration dG t
I
can therefore be obtained accordingly as
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in which v and a stand for the horizontal velocity and acceleration of the train, respectively,
and the prime denotes the di!erentiation with respect to x, and the independent variables
are omitted for simplicity. Substituting equations (17}19) into equation (8) and combining
with equation (13), the equation of motion of the entire train}bridge system can be
written as

mdG#cdQ #kd"p, (20)

where m, c, k, p and d are the mass matrix, damping matrix, sti!ness matrix, load vector and
displacement vector for the entire train}bridge system respectively. Equation (20) can also
be written in partitioned form as
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in which the sub-matrices and sub-vectors are given as
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The problem is then solved by direct integration using the Wilson h method or similar
methods [19]. However, the matrices and vectors in the equation of motion for the
train}bridge system are time-dependent. In particular, the number of railway vehicles acting
on the bridge and the positions of axles have to be checked so that the mass matrix m

t
, the

damping matrix c
t
, the sti!ness matrix k

t
and the load vector p

t
at time t are updated

accordingly.

5. CASE STUDY

Figure 4 shows the simpli"ed model of an actual cable-stayed bridge. The bridge is
provided with four anchor piers, which include two end piers and two intermediate piers
anchoring the middle of each side span. The cables have a semi-fan arrangement. The bridge
is generally symmetrical except for the support arrangement. The bridge deck is hinged at
Tower C but permitted to slide longitudinally on bearings installed on Tower D and all
other piers. The cables are numbered sequentially starting from the leftmost cable. The
relevant properties of the bridge and the "nite element mesh are given in Table 1. The
modulus of elasticity for the main span of the deck and all cables is taken as 200 GPa. The
modulus of elasticity for the side spans of the each and the towers is taken as 35 GPa.
A train comprising a locomotive and seven carriages is considered to cross the bridge at
a speed ranging from 0 to 200 km/h. The basic data of the train model used are shown in
Table 2. The rail irregularity is expressed is a sinusoidal manner as r(x)"A

s
sin(2nx/¸

s
), in

which the amplitude is taken as A
s
"0)005 m and the wavelength is taken as ¸

s
"11)5 m.

To assess the results, the impact factor is calculated as follows:

I"(R
d
(x)!R

s
(x))/R

s
(x), (31)

in which R
d
(x) and R

s
(x) are, respectively, the maximum dynamic and static responses of the

bridge at the location x resulting from the passage of the train. Note that the maximum
dynamic response R

d
(x) and the maximum static response R

s
(x) may be caused by the train at

di!erent locations. The response may be the displacement, bending moment or cable tension
at the component concerned. Certain parts of the bridge have been selected for a detailed
study of the impact e!ect. For the bridge deck, the cross-sections chosen include Section
G (midway between Piers A and B), Section B (directly above Pier B), Section H (midway
Figure 4. Simpli"ed model of a cable-stayed bridge (dimensions in m).



TABLE 1

Properties of the cable-stayed bridge

Member Number of Cross-sectional Moment of Mass per unit
elements area (m2 ) inertia (m4) length (ton/m)

Deck side spans AC and DF 24, 24 48.49 613)138 220)0
Deck main span CD 46 19)56 173)876 60)0
Towers C and D above deck 21, 21 41)90 197)757 111)035
(between anchorages)
Towers C and D above deck 2, 2 45)40 288)675 120)311
(below anchorages)
Towers C and D below deck 3, 3 88)62 1717)345 234)843
Cables 1}5 and 84}88 1 each 0)03195 * 0)250
Cables 6}11 and 78}83 1 each 0)02825 * 0)222
Cables 12}14 and 75}77 1 each 0)02456 * 0)193
Cables 15}17 and 72}74 1 each 0)02225 * 0)175
Cables 18}21 and 68}71 1 each 0)01763 * 0)138
Cables 22}23 and 66}67 1 each 0)02502 * 0)196
Cables 24}27 and 62}65 1 each 0)01670 * 0)131
Cables 28}30 and 59}61 1 each 0)01901 * 0)149
Cables 31}33 and 56}58 1 each 0)02363 * 0)185
Cables 34}39 and 50}55 1 each 0)02687 * 0)211
Cables 40}49 1 each 0)03010 * 0)236

TABLE 2

Basic data of the train model

Data Locomotive Carriage

Mass of vehicle body m
v
(t) 90)958 34)0

Mass of each bogie frame m
f
(t) 10)175 3)0

Mass of each axle together with wheels m
w
(t) 4)522 1)4

Moment of inertia of vehicle body I
v
(tm2) 2880)0 2086)0

Moment of inertia of each bogie frame I
f
(tm2) 226)3 3)47

Sti!ness of spring in secondary suspension k
1
(kN/m) 55000 550

Sti!ness of spring in primary suspension k
2
(kN/m) 10710 1000

Distance between two centres of bogie frames l
1
(m) 12)0 9)0

Distance between two centres of axles l
2
(m) 3)6 2)4

Overall length of vehicle body l
3

(m) 23)1 26)575
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between Pier B and Tower C), Section S (directly above Tower C) and Section M (midway
between Tower C and Tower D), as shown in Figure 4. Section R at the base of the Tower C is
chosen to study the e!ect on the base moment. Cables 1, 7, 22, 23, 33 and 44 are chosen to
monitor the variation of cable tension. In the analysis, the interaction forces between the train
and the bridge are being monitored to make sure that no separation has occurred [20].

5.1. EFFECT OF DAMPING

The damping characteristics of the bridge and the train vehicles are very important
parameters in#uencing the dynamic response of a cable-stayed bridge. However, these



TABLE 3

Constants for Rayleigh damping of train vehicles and bridge

Frequency Frequency Coe$cient Coe$cient
f
1

(Hz) f
2

(Hz) a b

Locomotive 2)76 4)21 0)0005 0)0025
Caarriage 0)85 1)38 0)0015 0)0075
Cable-stayed bridge 0)35 0)60 0)0040 0)0200

Figure 5. Impact factors based on bending moment at Section G of deck: **h*, damping case 1; **n*,
damping case 2; **s*, damping case 3.
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damping parameters are often di$cult to assess with accuracy and the damping parameters
for the chosen train are not available. Therefore, Rayleigh damping [19] has been adopted
in the present study. For example, the damping matrix c

b
of the bridge takes the form

c
b
"am

b
#bk

b
where a and b are constants determined from the two given or assumed

damping ratios corresponding to the two lowest frequencies of vibration determined from
the free vibration analysis using "nite element method. The constants a and b for the train
vehicles can be similarly obtained. The parameters adopted in the present study are shown
in Table 3, which correspond to damping ratios ranging from 2 to 4%. In the present study,
three cases of damping are considered and the entire train comprising a locomotive and
seven carriages has been used. In Case 1, the parameters shown in Table 3 are adopted
whereas in Case 2, half of the values shown in Table 3 are adopted. In Case 3, all damping
constants are considered as zero.

The impact factors based on bending moment at Section G of the deck are plotted
in Figure 5. Figures 6 and 7, respectively, present the impact factors based on bending
moment at Section R of Tower C and those based on tension in Cable 22. The results
for other sections are similar. The maximum impact factors and their associated speeds
are extracted and presented in Table 4. It is observed that the maximum impact factors
are mostly concentrated in the speed range of 90}100 km/h. One may be led to think that
such pronounced impact e!ects are due to the excitation of the lower vibration modes
caused by travelling on the sinusoidal rail irregularity. A simple check actually shows that
the frequencies of such excitations are far from the lower natural frequencies of the bridge
and the train vehicles. Figure 8 shows the impact factor based on the de#ection at
Section M of the deck. The low peaks at 100 km/h and the high-speed tail are unusual.
However, as the impact factors in this case are generally very small, they cannot be taken as
representative.



Figure 6. Impact factors based on bending moment at Section R of Tower C:**h*, damping case 1;**n*,
damping case 2; **s*, damping case 3.

Figure 7. Impact factors based on tension in Cable 22.**h*, damping case 1;**n*, damping case 2;**s*,
damping case 3.

TABLE 4

E+ect of damping: maximum impact factors and associated speed

Damping case 1 Damping case 2 Damping case 3

Load e!ects Impact Speed Impact Speed Impact Speed
factor (km/h) factor (km/h) factor (km/h)

Bending moment at Section B of deck 0)39 100 0)55 100 0)72 100
Bending moment at Section G of deck 0)67 100 0)93 100 1)40 100
Bending moment at Section H of deck 0)83 100 1)10 100 1)26 100
Bending moment at Section M

of deck 0)06 100 0)09 100 0)12 100
Bending moment at Section S of deck 0)03 100 0)05 100 0)13 100
Bending moment at Section R

of Tower C 0)08 100 0)12 100 0)32 90
Bending moment at Section S

of Tower C 0)04 100 0)06 100 0)18 90
Tension in Cable 1 (0)01 75 0)01 100 0)06 90
Tension in Cable 7 (0)01 90 0)04 100 0)07 100
Tension in Cable 22 0)09 100 0)22 100 0)64 100
Tension in Cable 23 0)05 100 0)09 100 0)21 100
Tension in Cable 33 0)01 100 0)03 100 0)07 90
Tension in Cable 44 0)02 90 0)02 90 0)07 90

456 F. T. K. AU E¹ A¸.



Figure 8. Impact factors based on de#ection at Section M of deck: **h*, damping case 1; **n*, damping
case 2; **s*, damping case 3.

Figure 9. Comparison between a train and a solitary locomotive: impact factors based on bending moment at
Section H of deck: **n*, train; **s*, solitary locomotive.
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The impact e!ects based on the bending of deck are generally high at the side spans (i.e.,
sections G, B and H) but are much lower around the main span (i.e., Sections S and M). At
the tower, the impact e!ects are moderate (i.e., Sections R and S). Very large variation in
impact e!ects is observed among the cables. Most of the cables are subject to a very small
impact e!ects. Exceptions are the short cables (e.g., Cables 22 and 23) which exhibit small to
moderate impact e!ects. The impact e!ects based on de#ection are normally close to zero,
as shown in Figure 8 for Section M of the deck. Damping is generally e!ective to reduce the
amount of impact.

5.2. EFFECT OF LENGTH OF TRAIN

The e!ect of the length of train on impact is then investigated. Two cases have been
studied, and they are an entire train comprising a locomotive and seven carriages, and
a solitary locomotive. When no damping is assumed (i.e., damping Case 3), separation
between the train and the bridge is detected. Therefore, for the sake of comparison, damping
Case 2, which does not give rise to any separation, has been chosen. Similar impact factors
as in Section 5.1 have been calculated but only the representative ones are presented here.
The impact factors based on bending moment at Section H of the deck are plotted in
Figure 9. Figure 10 presents the impact factors based on bending moment at Section R
of Tower C. The impact factors based on tension in Cables 23 are shown in Figure 11.
Table 5 sums up the maximum impact factors and associated speeds. Figure 12 shows the
impact factor based on de#ection at Section M of the deck. It is observed that, with the



Figure 10. Comparison between a train and a solitary locomotive: impact factors based on bending moment at
Section R of Tower C: **n*, train; **s*, solitary locomotive.

Figure 11. Comparison between a train and a solitary locomotive: impact factors based on tension in Cable 23:
**n*, train; **s*, solitary locomotive.

Figure 12. Comparison between a train and a solitary locomotive: impact factors based on de#ection at Section
M of deck: **n*, train; **s*, solitary locomotive.
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exception of the impact factor based on bending at Section H of deck, the impact e!ects of
a solitary locomotive are more signi"cant than those of an entire train.

5.3. EFFECT OF TRAIN MODEL

As many di!erent methods have been used to model the train vehicles, this section is
devoted to the evaluation of their performance. The train model developed here can be



TABLE 5

E+ect of length of train: maximum impact factors and associated speed

Train Solitary locomotive

Impact Speed Impact Speed
Load e!ects factor (km/h) factor (km/h)

Bending moment at Section H of deck 1)10 100 1)03 100
Bending moment at Section M of deck 0)09 100 1)15 100
Bending moment at Section S of deck 0)05 100 0)25 100
Bending moment at Section R of Tower C 0)12 100 0)69 100
Tension in Cable 23 0)09 100 0)52 100
Tension in Cable 33 0)03 100 0)22 100
Tension in Cable 44 0)02 90 0)08 90

Figure 13. Models to represent a train vehicle: (a) train model; (b) 4-axle moving force model; (c) 4-axle moving
mass model: (d) 4-axle 2-d.o.f. moving vehicle model; (e) 2-axle 2-d.o.f. moving vehicle model.
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degenerated to various simpli"ed models by setting certain components zero. Figure 13
shows the simpli"ed models investigated. They include the train model, the 4-axle moving
force model, the 4-axle moving mass model, the 4-axle 2-d.o.f. moving vehicle model,
and the 2-axle 2-d.o.f. moving vehicle model. Damping Case 2 has been assumed. The
mass, sti!ness and damping of the train are assumed to be evenly distributed among
various axles of the simpli"ed model where applicable. Figures 14}16 show, respectively,
the impact factors based on bending moments at Sections G and H of deck, and
Section R of Tower C. The impact factors based on tension in Cable 22 are shown in Figure
17. Results from the train model can be regarded as the reference solutions. It is observed
that the moving force and moving mass models far underestimate the impact e!ects. The
model with 2 axles of 2-d.o.f. moving vehicles tends to overestimate the impact e!ects. The
model with 4 axles of 2-d.o.f. moving vehicles tends to give fairly close prediction of impact
e!ects. This is somehow expected, as it is closer to the train model with respect to the
number of axles and suspension characteristics. The model with 4 axles of 2-d.o.f. moving
vehicles is therefore a reasonable choice having due regard to accuracy and complexity of
modelling.



Figure 14. Comparison of various train models: impact factors based on bending moment at Section G of deck:
**s*, train; **h*, 4-axle moving force; **e*, 4-axle moving mass; **]*, 4-axle 2-d.o.f. vehicles; **n*,
2-axle 2-d.o.f. vehicles.

Figure 15. Comparison of various train models: impact factors based on bending moment at Section H of deck:
**s*, train; **h*, 4-axle moving force; **e*, 4-axle moving mass; **]*, 4-axle 2-d.o.f. vehicles; **n*,
2-axle 2-d.o.f. vehicles.

Figure 16. Comparison of various train models: impact factors based on bending moment at Section R of
Tower C:**s*, train;**h*, 4-axle moving force;**e*, 4-axle moving mass;**]*, 4-axle 2-d.o.f. vehicles;
**n*, 2-axle 2-d.o.f. vehicles.
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6. CONCLUSIONS

The impact e!ect of a moving train on a cable-stayed bridge is studied by modelling the
bridge as a planar system and the train as a series of 4-axle vehicles. The rail irregularities
and the geometric non-linear behaviour of the cable-stayed bridge are taken into account.



Figure 17. Comparison of various train models: impact factors based on tension in Cable 22: **s*, train;
**h*, 4-axle moving force; **e*, 4-axle moving mass; **]*, 4-axle 2-d.o.f. vehicles; **n*, 2-axle 2-d.o.f.
vehicles.
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The impact factors for various speeds are evaluated using a typical cable-stayed bridge and
a sinusoidal irregularity pro"le. The in#uence of damping on impact factors is signi"cant
but it depends on the type of load e!ect considered and the location. The impact e!ect based
on the bending of deck are generally high at the shorter side spans but are much lower
around the much longer main span. At the tower, the impact e!ects are moderate. Very
large variation in impact e!ects is observed among the cables. Most of the cables, with the
exception of the shorter cables around the towers, are subject to very small impact e!ects.
Damping is generally e!ective to reduce the amount of impact. The results show that the
impact factor varies very much depending on the e!ect and the location studied, and such
factors need to be adequately taken into account during the design.

The e!ect of the length of train on impact has also been investigated. It is observed that,
in almost all cases, the impact e!ects of a solitary locomotive are more signi"cant than those
of an entire train. Various models for the train vehicle have been evaluated. It is observed
that the moving force and moving mass models far underestimate the impact e!ects. The
model with fewer axles of equivalent 2-d.o.f. moving vehicles tends to overestimate the
impact e!ects while the model with the same number of axles of 2-d.o.f. moving vehicles
tends to give fairly close prediction of impact e!ects.
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APPENDIX A

The equations of motion of the vehicle body can be written as

m
v
yK
v
#f

5
#f

6
"0, I

v
hG
v
#( f

6
!f

5
)l
1
/2"0. (A1, A2)

Similarly, the equations of motion of the bogie frames appear as
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The equations of motion of the axles can be written as
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Substituting equations (A14}A19) into equations (A1}A7), the equations of motion of the
train become
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Equations (A20}A29) can be written in matrix notation in terms of the mass matrix m
t
,

the damping matrix c
t
, the sti!ness matrix k

t
and the load vector f

t
for the train vehicle as
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The equation of motion for the train model can be written in terms of the sub-matrices and
sub-vectors as

C
m t

uu
m t

II
D G

dG t
u

dG t
I
H#C

c t
uu

c t
uI

c t
Iu

c t
II
D G

dQ t
u

dQ t
I
H#C

k t
uu

k t
uI

k t
Iu

k t
II
D G

d t
u

d t
I
H#G

f t
u

f t
I
H , (A31)

where the sub-matrices and sub-vectors are given below:
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